Source code for causalpy.pymc_models

#   Copyright 2022 - 2025 The PyMC Labs Developers
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
"""Custom PyMC models for causal inference"""

from typing import Any, Dict, List, Optional

import arviz as az
import numpy as np
import pandas as pd
import pymc as pm
import pytensor.tensor as pt
import xarray as xr
from arviz import r2_score
from patsy import dmatrix

from causalpy.utils import round_num


[docs] class PyMCModel(pm.Model): """A wrapper class for PyMC models. This provides a scikit-learn like interface with methods like `fit`, `predict`, and `score`. It also provides other methods which are useful for causal inference. Example ------- >>> import causalpy as cp >>> import numpy as np >>> import pymc as pm >>> from causalpy.pymc_models import PyMCModel >>> class MyToyModel(PyMCModel): ... def build_model(self, X, y, coords): ... with self: ... self.add_coords(coords) ... X_ = pm.Data(name="X", value=X) ... y_ = pm.Data(name="y", value=y) ... beta = pm.Normal( ... "beta", mu=0, sigma=1, shape=(y.shape[1], X.shape[1]) ... ) ... sigma = pm.HalfNormal("sigma", sigma=1, shape=y.shape[1]) ... mu = pm.Deterministic( ... "mu", pm.math.dot(X_, beta.T), dims=["obs_ind", "treated_units"] ... ) ... pm.Normal("y_hat", mu=mu, sigma=sigma, observed=y_) >>> rng = np.random.default_rng(seed=42) >>> X = xr.DataArray( ... rng.normal(loc=0, scale=1, size=(20, 2)), ... dims=["obs_ind", "coeffs"], ... coords={"obs_ind": np.arange(20), "coeffs": ["coeff_0", "coeff_1"]}, ... ) >>> y = xr.DataArray( ... rng.normal(loc=0, scale=1, size=(20, 1)), ... dims=["obs_ind", "treated_units"], ... coords={"obs_ind": np.arange(20), "treated_units": ["unit_0"]}, ... ) >>> model = MyToyModel( ... sample_kwargs={ ... "chains": 2, ... "draws": 2000, ... "progressbar": False, ... "random_seed": 42, ... } ... ) >>> model.fit( ... X, ... y, ... coords={ ... "coeffs": ["coeff_0", "coeff_1"], ... "obs_ind": np.arange(20), ... "treated_units": ["unit_0"], ... }, ... ) Inference data... >>> model.score(X, y) # doctest: +ELLIPSIS unit_0_r2 ... unit_0_r2_std ... dtype: float64 >>> X_new = rng.normal(loc=0, scale=1, size=(20, 2)) >>> model.predict(X_new) Inference data... """
[docs] def __init__(self, sample_kwargs: Optional[Dict[str, Any]] = None): """ :param sample_kwargs: A dictionary of kwargs that get unpacked and passed to the :func:`pymc.sample` function. Defaults to an empty dictionary. """ super().__init__() self.idata = None self.sample_kwargs = sample_kwargs if sample_kwargs is not None else {}
[docs] def build_model(self, X, y, coords) -> None: """Build the model, must be implemented by subclass.""" raise NotImplementedError("This method must be implemented by a subclass")
def _data_setter(self, X: xr.DataArray) -> None: """ Set data for the model. This method is used internally to register new data for the model for prediction. NOTE: We are actively changing the `X`. Often, this matrix will have a different number of rows than the original data. So to make the shapes work, we need to update all data nodes in the model to have the correct shape. The values are not used, so we set them to 0. In our case, we just have data nodes X and y, but if in the future we get more complex models with more data nodes, then we'll need to update all of them - ideally programmatically. """ new_no_of_observations = X.shape[0] # Use integer indices for obs_ind to avoid datetime compatibility issues with PyMC obs_coords = np.arange(new_no_of_observations) with self: # Get the number of treated units from the model coordinates treated_units_coord = getattr(self, "coords", {}).get( "treated_units", ["unit_0"] ) n_treated_units = len(treated_units_coord) # Always use 2D format for consistency pm.set_data( {"X": X, "y": np.zeros((new_no_of_observations, n_treated_units))}, coords={"obs_ind": obs_coords}, )
[docs] def fit(self, X, y, coords: Optional[Dict[str, Any]] = None) -> None: """Draw samples from posterior, prior predictive, and posterior predictive distributions, placing them in the model's idata attribute. """ # Ensure random_seed is used in sample_prior_predictive() and # sample_posterior_predictive() if provided in sample_kwargs. random_seed = self.sample_kwargs.get("random_seed", None) self.build_model(X, y, coords) with self: self.idata = pm.sample(**self.sample_kwargs) self.idata.extend(pm.sample_prior_predictive(random_seed=random_seed)) self.idata.extend( pm.sample_posterior_predictive( self.idata, progressbar=False, random_seed=random_seed ) ) return self.idata
[docs] def predict( self, X, coords: Optional[Dict[str, Any]] = None, out_of_sample: Optional[bool] = False, **kwargs, ): """ Predict data given input data `X` .. caution:: Results in KeyError if model hasn't been fit. """ # Ensure random_seed is used in sample_prior_predictive() and # sample_posterior_predictive() if provided in sample_kwargs. random_seed = self.sample_kwargs.get("random_seed", None) # Base _data_setter doesn't use coords, but subclasses might override _data_setter to use it. # If a subclass needs coords in _data_setter, it should handle it. self._data_setter(X) with self: pp = pm.sample_posterior_predictive( self.idata, var_names=["y_hat", "mu"], progressbar=False, random_seed=random_seed, ) # Assign coordinates from input X to ensure xarray operations work correctly # This is necessary because PyMC uses integer indices internally, but we need # to preserve the original coordinates (e.g., datetime indices) for proper # alignment with other xarray operations like calculate_impact() if isinstance(X, xr.DataArray) and "obs_ind" in X.coords: pp["posterior_predictive"] = pp["posterior_predictive"].assign_coords( obs_ind=X.obs_ind ) return pp
[docs] def score( self, X, y, coords: Optional[Dict[str, Any]] = None, **kwargs ) -> pd.Series: """Score the Bayesian :math:`R^2` given inputs ``X`` and outputs ``y``. Note that the score is based on a comparison of the observed data ``y`` and the model's expected value of the data, `mu`. .. caution:: The Bayesian :math:`R^2` is not the same as the traditional coefficient of determination, https://en.wikipedia.org/wiki/Coefficient_of_determination. """ mu = self.predict(X) mu_data = az.extract(mu, group="posterior_predictive", var_names="mu") scores = {} # Always iterate over treated_units dimension - no branching needed! for i, unit in enumerate(mu_data.coords["treated_units"].values): unit_mu = mu_data.sel(treated_units=unit).T # (sample, obs_ind) unit_y = y.sel(treated_units=unit).data unit_score = r2_score(unit_y, unit_mu.data) scores[f"unit_{i}_r2"] = unit_score["r2"] scores[f"unit_{i}_r2_std"] = unit_score["r2_std"] return pd.Series(scores)
[docs] def calculate_impact( self, y_true: xr.DataArray, y_pred: az.InferenceData ) -> xr.DataArray: y_hat = y_pred["posterior_predictive"]["y_hat"] # Ensure the coordinate type and values match along obs_ind so xarray can align if "obs_ind" in y_hat.dims and "obs_ind" in getattr(y_true, "coords", {}): try: # Assign the same coordinate values (e.g., DatetimeIndex) to prediction y_hat = y_hat.assign_coords(obs_ind=y_true["obs_ind"]) # type: ignore[index] except Exception: # If assignment fails, fall back to position-based subtraction # by temporarily dropping coords to avoid dtype promotion issues y_hat = y_hat.reset_coords(names=["obs_ind"], drop=True) y_true = y_true.reset_coords(names=["obs_ind"], drop=True) impact = y_true - y_hat return impact.transpose(..., "obs_ind")
[docs] def calculate_cumulative_impact(self, impact): return impact.cumsum(dim="obs_ind")
[docs] def print_coefficients(self, labels, round_to=None) -> None: def print_row( max_label_length: int, name: str, coeff_samples: xr.DataArray, round_to: int ) -> None: """Print one row of the coefficient table""" formatted_name = f" {name: <{max_label_length}}" formatted_val = f"{round_num(coeff_samples.mean().data, round_to)}, 94% HDI [{round_num(coeff_samples.quantile(0.03).data, round_to)}, {round_num(coeff_samples.quantile(1 - 0.03).data, round_to)}]" # noqa: E501 print(f" {formatted_name} {formatted_val}") def print_coefficients_for_unit( unit_coeffs: xr.DataArray, unit_sigma: xr.DataArray, labels: list, round_to: int, ) -> None: """Print coefficients for a single unit""" # Determine the width of the longest label max_label_length = max(len(name) for name in labels + ["sigma"]) for name in labels: coeff_samples = unit_coeffs.sel(coeffs=name) print_row(max_label_length, name, coeff_samples, round_to) # Add coefficient for measurement std print_row(max_label_length, "sigma", unit_sigma, round_to) print("Model coefficients:") coeffs = az.extract(self.idata.posterior, var_names="beta") # Always has treated_units dimension - no branching needed! treated_units = coeffs.coords["treated_units"].values for unit in treated_units: if len(treated_units) > 1: print(f"\nTreated unit: {unit}") unit_coeffs = coeffs.sel(treated_units=unit) unit_sigma = az.extract(self.idata.posterior, var_names="sigma").sel( treated_units=unit ) print_coefficients_for_unit(unit_coeffs, unit_sigma, labels, round_to or 2)
[docs] class LinearRegression(PyMCModel): r""" Custom PyMC model for linear regression. Defines the PyMC model .. math:: \beta &\sim \mathrm{Normal}(0, 50) \\ \sigma &\sim \mathrm{HalfNormal}(1) \\ \mu &= X \cdot \beta \\ y &\sim \mathrm{Normal}(\mu, \sigma) \\ Example -------- >>> import causalpy as cp >>> import numpy as np >>> import xarray as xr >>> from causalpy.pymc_models import LinearRegression >>> rd = cp.load_data("rd") >>> rd["treated"] = rd["treated"].astype(int) >>> coeffs = ["x", "treated"] >>> X = xr.DataArray( ... rd[coeffs].values, ... dims=["obs_ind", "coeffs"], ... coords={"obs_ind": rd.index, "coeffs": coeffs}, ... ) >>> y = xr.DataArray( ... rd["y"].values[:, None], ... dims=["obs_ind", "treated_units"], ... coords={"obs_ind": rd.index, "treated_units": ["unit_0"]}, ... ) >>> lr = LinearRegression(sample_kwargs={"progressbar": False}) >>> coords={"coeffs": coeffs, "obs_ind": np.arange(rd.shape[0]), "treated_units": ["unit_0"]} >>> lr.fit(X, y, coords=coords) Inference data... """ # noqa: W605
[docs] def build_model(self, X, y, coords): """ Defines the PyMC model """ with self: # Ensure treated_units coordinate exists for consistency if "treated_units" not in coords: coords = coords.copy() coords["treated_units"] = ["unit_0"] self.add_coords(coords) X = pm.Data("X", X, dims=["obs_ind", "coeffs"]) y = pm.Data("y", y, dims=["obs_ind", "treated_units"]) beta = pm.Normal("beta", 0, 50, dims=["treated_units", "coeffs"]) sigma = pm.HalfNormal("sigma", 1, dims="treated_units") mu = pm.Deterministic( "mu", pt.dot(X, beta.T), dims=["obs_ind", "treated_units"] ) pm.Normal("y_hat", mu, sigma, observed=y, dims=["obs_ind", "treated_units"])
[docs] class WeightedSumFitter(PyMCModel): r""" Used for synthetic control experiments. Defines the PyMC model: .. math:: \sigma &\sim \mathrm{HalfNormal}(1) \\ \beta &\sim \mathrm{Dirichlet}(1,...,1) \\ \mu &= X \cdot \beta \\ y &\sim \mathrm{Normal}(\mu, \sigma) \\ Example -------- >>> import causalpy as cp >>> import numpy as np >>> import xarray as xr >>> from causalpy.pymc_models import WeightedSumFitter >>> sc = cp.load_data("sc") >>> control_units = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] >>> X = xr.DataArray( ... sc[control_units].values, ... dims=["obs_ind", "coeffs"], ... coords={"obs_ind": sc.index, "coeffs": control_units}, ... ) >>> y = xr.DataArray( ... sc['actual'].values.reshape((sc.shape[0], 1)), ... dims=["obs_ind", "treated_units"], ... coords={"obs_ind": sc.index, "treated_units": ["actual"]}, ... ) >>> coords = { ... "coeffs": control_units, ... "treated_units": ["actual"], ... "obs_ind": np.arange(sc.shape[0]), ... } >>> wsf = WeightedSumFitter(sample_kwargs={"progressbar": False}) >>> wsf.fit(X, y, coords=coords) Inference data... """ # noqa: W605
[docs] def build_model(self, X, y, coords): """ Defines the PyMC model """ with self: self.add_coords(coords) n_predictors = X.sizes["coeffs"] X = pm.Data("X", X, dims=["obs_ind", "coeffs"]) y = pm.Data("y", y, dims=["obs_ind", "treated_units"]) beta = pm.Dirichlet( "beta", a=np.ones(n_predictors), dims=["treated_units", "coeffs"] ) sigma = pm.HalfNormal("sigma", 1, dims="treated_units") mu = pm.Deterministic( "mu", pt.dot(X, beta.T), dims=["obs_ind", "treated_units"] ) pm.Normal("y_hat", mu, sigma, observed=y, dims=["obs_ind", "treated_units"])
[docs] class InstrumentalVariableRegression(PyMCModel): """Custom PyMC model for instrumental linear regression Example -------- >>> import causalpy as cp >>> import numpy as np >>> from causalpy.pymc_models import InstrumentalVariableRegression >>> N = 10 >>> e1 = np.random.normal(0, 3, N) >>> e2 = np.random.normal(0, 1, N) >>> Z = np.random.uniform(0, 1, N) >>> ## Ensure the endogeneity of the the treatment variable >>> X = -1 + 4 * Z + e2 + 2 * e1 >>> y = 2 + 3 * X + 3 * e1 >>> t = X.reshape(10, 1) >>> y = y.reshape(10, 1) >>> Z = np.asarray([[1, Z[i]] for i in range(0, 10)]) >>> X = np.asarray([[1, X[i]] for i in range(0, 10)]) >>> COORDS = {"instruments": ["Intercept", "Z"], "covariates": ["Intercept", "X"]} >>> sample_kwargs = { ... "tune": 5, ... "draws": 10, ... "chains": 2, ... "cores": 2, ... "target_accept": 0.95, ... "progressbar": False, ... } >>> iv_reg = InstrumentalVariableRegression(sample_kwargs=sample_kwargs) >>> iv_reg.fit( ... X, ... Z, ... y, ... t, ... COORDS, ... { ... "mus": [[-2, 4], [0.5, 3]], ... "sigmas": [1, 1], ... "eta": 2, ... "lkj_sd": 1, ... }, ... None, ... ) Inference data... """
[docs] def build_model(self, X, Z, y, t, coords, priors): """Specify model with treatment regression and focal regression data and priors :param X: A pandas dataframe used to predict our outcome y :param Z: A pandas dataframe used to predict our treatment variable t :param y: An array of values representing our focal outcome y :param t: An array of values representing the treatment t of which we're interested in estimating the causal impact :param coords: A dictionary with the coordinate names for our instruments and covariates :param priors: An optional dictionary of priors for the mus and sigmas of both regressions :code:`priors = {"mus": [0, 0], "sigmas": [1, 1], "eta": 2, "lkj_sd": 2}` """ # --- Priors --- with self: self.add_coords(coords) beta_t = pm.Normal( name="beta_t", mu=priors["mus"][0], sigma=priors["sigmas"][0], dims="instruments", ) beta_z = pm.Normal( name="beta_z", mu=priors["mus"][1], sigma=priors["sigmas"][1], dims="covariates", ) sd_dist = pm.Exponential.dist(priors["lkj_sd"], shape=2) chol, corr, sigmas = pm.LKJCholeskyCov( name="chol_cov", eta=priors["eta"], n=2, sd_dist=sd_dist, ) # compute and store the covariance matrix pm.Deterministic(name="cov", var=pt.dot(l=chol, r=chol.T)) # --- Parameterization --- mu_y = pm.Deterministic(name="mu_y", var=pt.dot(X, beta_z)) # focal regression mu_t = pm.Deterministic(name="mu_t", var=pt.dot(Z, beta_t)) # instrumental regression mu = pm.Deterministic(name="mu", var=pt.stack(tensors=(mu_y, mu_t), axis=1)) # --- Likelihood --- pm.MvNormal( name="likelihood", mu=mu, chol=chol, observed=np.stack(arrays=(y.flatten(), t.flatten()), axis=1), shape=(X.shape[0], 2), )
[docs] def sample_predictive_distribution(self, ppc_sampler="jax"): """Function to sample the Multivariate Normal posterior predictive Likelihood term in the IV class. This can be slow without using the JAX sampler compilation method. If using the JAX sampler it will sample only the posterior predictive distribution. If using the PYMC sampler if will sample both the prior and posterior predictive distributions.""" random_seed = self.sample_kwargs.get("random_seed", None) if ppc_sampler == "jax": with self: self.idata.extend( pm.sample_posterior_predictive( self.idata, random_seed=random_seed, compile_kwargs={"mode": "JAX"}, ) ) elif ppc_sampler == "pymc": with self: self.idata.extend(pm.sample_prior_predictive(random_seed=random_seed)) self.idata.extend( pm.sample_posterior_predictive( self.idata, random_seed=random_seed, ) )
[docs] def fit(self, X, Z, y, t, coords, priors, ppc_sampler=None): """Draw samples from posterior distribution and potentially from the prior and posterior predictive distributions. The fit call can take values for the ppc_sampler = ['jax', 'pymc', None] We default to None, so the user can determine if they wish to spend time sampling the posterior predictive distribution independently. """ # Ensure random_seed is used in sample_prior_predictive() and # sample_posterior_predictive() if provided in sample_kwargs. # Use JAX for ppc sampling of multivariate likelihood self.build_model(X, Z, y, t, coords, priors) with self: self.idata = pm.sample(**self.sample_kwargs) self.sample_predictive_distribution(ppc_sampler=ppc_sampler) return self.idata
[docs] class PropensityScore(PyMCModel): r""" Custom PyMC model for inverse propensity score models .. note: Generally, the `.fit()` method should be used rather than calling `.build_model()` directly. Defines the PyMC model .. math:: \beta &\sim \mathrm{Normal}(0, 1) \\ \sigma &\sim \mathrm{HalfNormal}(1) \\ \mu &= X \cdot \beta \\ p &= \text{logit}^{-1}(\mu) \\ t &\sim \mathrm{Bernoulli}(p) Example -------- >>> import causalpy as cp >>> import numpy as np >>> from causalpy.pymc_models import PropensityScore >>> df = cp.load_data('nhefs') >>> X = df[["age", "race"]] >>> t = np.asarray(df["trt"]) >>> ps = PropensityScore(sample_kwargs={"progressbar": False}) >>> ps.fit(X, t, coords={ ... 'coeffs': ['age', 'race'], ... 'obs_ind': np.arange(df.shape[0]) ... }, ... prior={'b': [0, 1]}, ... ) Inference... """ # noqa: W605
[docs] def build_model(self, X, t, coords, prior, noncentred): "Defines the PyMC propensity model" with self: self.add_coords(coords) X_data = pm.Data("X", X, dims=["obs_ind", "coeffs"]) t_data = pm.Data("t", t.flatten(), dims="obs_ind") if noncentred: mu_beta, sigma_beta = prior["b"] beta_std = pm.Normal("beta_std", 0, 1, dims="coeffs") b = pm.Deterministic( "beta_", mu_beta + sigma_beta * beta_std, dims="coeffs" ) else: b = pm.Normal("b", mu=prior["b"][0], sigma=prior["b"][1], dims="coeffs") mu = pm.math.dot(X_data, b) p = pm.Deterministic("p", pm.math.invlogit(mu)) pm.Bernoulli("t_pred", p=p, observed=t_data, dims="obs_ind")
[docs] def fit(self, X, t, coords, prior={"b": [0, 1]}, noncentred=True): """Draw samples from posterior, prior predictive, and posterior predictive distributions. We overwrite the base method because the base method assumes a variable y and we use t to indicate the treatment variable here. """ # Ensure random_seed is used in sample_prior_predictive() and # sample_posterior_predictive() if provided in sample_kwargs. random_seed = self.sample_kwargs.get("random_seed", None) self.build_model(X, t, coords, prior, noncentred) with self: self.idata = pm.sample(**self.sample_kwargs) self.idata.extend(pm.sample_prior_predictive(random_seed=random_seed)) self.idata.extend( pm.sample_posterior_predictive( self.idata, progressbar=False, random_seed=random_seed ) ) return self.idata
[docs] def fit_outcome_model( self, X_outcome, y, coords, priors={ "b_outcome": [0, 1], "sigma": 1, "beta_ps": [0, 1], }, noncentred=True, normal_outcome=True, spline_component=False, winsorize_boundary=0.0, ): """ Fit a Bayesian outcome model using covariates and previously estimated propensity scores. This function implements the second stage of a modular two-step causal inference procedure. It uses propensity scores extracted from a prior treatment model (via `self.fit()`) to adjust for confounding when estimating treatment effects on an outcome variable `y`. Parameters ---------- X_outcome : array-like, shape (n_samples, n_covariates) Covariate matrix for the outcome model. y : array-like, shape (n_samples,) Observed outcome variable. coords : dict Coordinate dictionary for named dimensions in the PyMC model. Should include a key "outcome_coeffs" for `X_outcome`. priors : dict, optional Dictionary specifying priors for outcome model parameters: - "b_outcome": list [mean, std] for regression coefficients. - "sigma": standard deviation of the outcome noise (default 1). noncentred : bool, default True If True, use a non-centred parameterization for the outcome coefficients. normal_outcome : bool, default True If True, assume a Normal likelihood for the outcome. If False, use a Student-t likelihood with unknown degrees of freedom. spline_component : bool, default False If True, include a spline basis expansion on the propensity score to allow flexible (nonlinear) adjustment. Uses B-splines with 30 internal knots. winsorize_boundary : float, default 0.0 If we wish to winsorize the propensity score this can be set to clip the high and low values of the propensity at 0 + winsorize_boundary and 1-winsorize_boundary Returns ------- idata_outcome : arviz.InferenceData The posterior and prior predictive samples from the outcome model. model_outcome : pm.Model The PyMC model object. Raises ------ AttributeError If the `self.idata` attribute is not available, which indicates that `fit()` (i.e., the treatment model) has not been called yet. Notes ----- - This model uses a sampled version of the propensity score (`p`) from the posterior of the treatment model, randomly selecting one posterior draw per call. This term is estimated initially in the InversePropensity class initialisation. - The term `beta_ps[0] * p` captures both main effects of the propensity score. - Including spline adjustment enables modeling nonlinear relationships between the propensity score and the outcome. """ if not hasattr(self, "idata"): raise AttributeError("""Object is missing required attribute 'idata' so cannot proceed. Call fit() first""") propensity_scores = az.extract(self.idata)["p"] random_seed = self.sample_kwargs.get("random_seed", None) with pm.Model(coords=coords) as model_outcome: X_data_outcome = pm.Data("X_outcome", X_outcome) Y_data_ = pm.Data("Y", y) if noncentred: mu_beta, sigma_beta = priors["b_outcome"] beta_std = pm.Normal("beta_std", 0, 1, dims="outcome_coeffs") beta = pm.Deterministic( "beta_", mu_beta + sigma_beta * beta_std, dims="outcome_coeffs" ) else: beta = pm.Normal( "beta_", priors["b_outcome"][0], priors["b_outcome"][1], dims="outcome_coeffs", ) beta_ps = pm.Normal("beta_ps", priors["beta_ps"][0], priors["beta_ps"][1]) chosen = np.random.choice(range(propensity_scores.shape[1])) p = propensity_scores[:, chosen].values p = np.clip(p, winsorize_boundary, 1 - winsorize_boundary) mu_outcome = pm.math.dot(X_data_outcome, beta) + beta_ps * p if spline_component: beta_ps_spline = pm.Normal( "beta_ps_spline", priors["beta_ps"][0], priors["beta_ps"][1], size=34, ) B = dmatrix( "bs(ps, knots=knots, degree=3, include_intercept=True, lower_bound=0, upper_bound=1) - 1", {"ps": p, "knots": np.linspace(0, 1, 30)}, ) B_f = np.asarray(B, order="F") splines_summed = pm.Deterministic( "spline_features", pm.math.dot(B_f, beta_ps_spline.T) ) mu_outcome = pm.math.dot(X_data_outcome, beta) + splines_summed sigma = pm.HalfNormal("sigma", priors["sigma"]) if normal_outcome: _ = pm.Normal("like", mu_outcome, sigma, observed=Y_data_) else: nu = pm.Exponential("nu", lam=1 / 10) _ = pm.StudentT( "like", nu=nu, mu=mu_outcome, sigma=sigma, observed=Y_data_ ) idata_outcome = pm.sample_prior_predictive(random_seed=random_seed) idata_outcome.extend(pm.sample(**self.sample_kwargs)) return idata_outcome, model_outcome
[docs] class BayesianBasisExpansionTimeSeries(PyMCModel): r""" Bayesian Structural Time Series Model. This model allows for the inclusion of trend, seasonality (via Fourier series), and optional exogenous regressors. .. math:: \text{trend} &\sim \text{LinearTrend}(...) \\ \text{seasonality} &\sim \text{YearlyFourier}(...) \\ \beta &\sim \mathrm{Normal}(0, \sigma_{\beta}) \quad \text{(if X is provided)} \\ \sigma &\sim \mathrm{HalfNormal}(\sigma_{err}) \\ \mu &= \text{trend_component} + \text{seasonality_component} + X \cdot \beta \quad \text{(if X is provided)} \\ y &\sim \mathrm{Normal}(\mu, \sigma) Parameters ---------- n_order : int, optional The number of Fourier components for the yearly seasonality. Defaults to 3. Only used if seasonality_component is None. n_changepoints_trend : int, optional The number of changepoints for the linear trend component. Defaults to 10. Only used if trend_component is None. prior_sigma : float, optional Prior standard deviation for the observation noise. Defaults to 5. trend_component : Optional[Any], optional A custom trend component model. If None, the default pymc-marketing LinearTrend component is used. Must have an `apply(time_data)` method that returns a PyMC tensor. seasonality_component : Optional[Any], optional A custom seasonality component model. If None, the default pymc-marketing YearlyFourier component is used. Must have an `apply(time_data)` method that returns a PyMC tensor. sample_kwargs : dict, optional A dictionary of kwargs that get unpacked and passed to the :func:`pymc.sample` function. Defaults to an empty dictionary. """ # noqa: W605
[docs] def __init__( self, n_order: int = 3, n_changepoints_trend: int = 10, prior_sigma: float = 5, trend_component: Optional[Any] = None, seasonality_component: Optional[Any] = None, sample_kwargs: Optional[Dict[str, Any]] = None, ): super().__init__(sample_kwargs=sample_kwargs) # Store original configuration parameters self.n_order = n_order self.n_changepoints_trend = n_changepoints_trend self.prior_sigma = prior_sigma self._first_fit_timestamp: Optional[pd.Timestamp] = None self._exog_var_names: Optional[List[str]] = None # Store custom components (fix the bug where they were swapped) self._custom_trend_component = trend_component self._custom_seasonality_component = seasonality_component # Initialize and validate components self._trend_component = None self._seasonality_component = None self._validate_and_initialize_components()
def _validate_and_initialize_components(self): """ Validate custom components only. Optional dependencies are imported lazily when default components are actually needed. """ # Validate custom components have required methods if self._custom_trend_component is not None: if not hasattr(self._custom_trend_component, "apply"): raise ValueError( "Custom trend_component must have an 'apply' method that accepts time data " "and returns a PyMC tensor." ) if self._custom_seasonality_component is not None: if not hasattr(self._custom_seasonality_component, "apply"): raise ValueError( "Custom seasonality_component must have an 'apply' method that accepts time data " "and returns a PyMC tensor." ) def _get_trend_component(self): """Get the trend component, creating default if needed.""" if self._custom_trend_component is not None: return self._custom_trend_component # Create default trend component (lazy import of pymc-marketing) if self._trend_component is None: try: from pymc_marketing.mmm import LinearTrend except ImportError as err: raise ImportError( "BayesianBasisExpansionTimeSeries requires pymc-marketing when default trend " "component is used. Install it with `pip install pymc-marketing`." ) from err self._trend_component = LinearTrend( n_changepoints=self.n_changepoints_trend ) return self._trend_component def _get_seasonality_component(self): """Get the seasonality component, creating default if needed.""" if self._custom_seasonality_component is not None: return self._custom_seasonality_component # Create default seasonality component (lazy import of pymc-marketing) if self._seasonality_component is None: try: from pymc_marketing.mmm import YearlyFourier except ImportError as err: raise ImportError( "BayesianBasisExpansionTimeSeries requires pymc-marketing when default seasonality " "component is used. Install it with `pip install pymc-marketing`." ) from err self._seasonality_component = YearlyFourier(n_order=self.n_order) return self._seasonality_component def _prepare_time_and_exog_features( self, X_exog_array: Optional[np.ndarray], datetime_index: pd.DatetimeIndex, exog_names_from_coords: Optional[List[str]] = None, ): """ Prepares time features from datetime_index and processes exogenous variables from X_exog_array. Exogenous variable names are taken from exog_names_from_coords (expected to be a list). """ if not isinstance(datetime_index, pd.DatetimeIndex): raise ValueError("`datetime_index` must be a pandas DatetimeIndex.") num_obs = len(datetime_index) if X_exog_array is not None: if not isinstance(X_exog_array, np.ndarray): raise TypeError("X_exog_array must be a NumPy array or None.") if X_exog_array.ndim == 1: X_exog_array = X_exog_array.reshape(-1, 1) if X_exog_array.shape[0] != num_obs: raise ValueError( f"Shape mismatch: X_exog_array rows ({X_exog_array.shape[0]}) and length of `datetime_index` ({num_obs}) must be equal." ) if exog_names_from_coords and X_exog_array.shape[1] != len( exog_names_from_coords ): raise ValueError( f"Mismatch: X_exog_array has {X_exog_array.shape[1]} columns, but {len(exog_names_from_coords)} names provided." ) else: # No exogenous variables passed as array if exog_names_from_coords: # This implies exog_names were given, but no array. Could mean an empty array for 0 columns was intended. if X_exog_array is None: X_exog_array = np.empty((num_obs, 0)) # Ensure exog_names_from_coords is a list for internal processing processed_exog_names = [] if exog_names_from_coords is not None: if isinstance(exog_names_from_coords, str): processed_exog_names = [exog_names_from_coords] elif isinstance(exog_names_from_coords, (list, tuple)): processed_exog_names = list(exog_names_from_coords) else: raise TypeError( f"exog_names_from_coords should be a list, tuple, or string, not {type(exog_names_from_coords)}" ) # Set or validate self._exog_var_names (must be a list) if X_exog_array is not None and X_exog_array.shape[1] > 0: if not processed_exog_names: raise ValueError( "Logic error: processed_exog_names should be set if X_exog_array has columns." ) if self._exog_var_names is None: self._exog_var_names = processed_exog_names # Ensures it's a list elif ( self._exog_var_names != processed_exog_names ): # List-to-list comparison raise ValueError( f"Exogenous variable names mismatch. Model fit with {self._exog_var_names}, " f"but current call provides {processed_exog_names}." ) elif ( self._exog_var_names is None ): # No exog vars in this call, and none set before self._exog_var_names = [] # Explicitly an empty list if self._first_fit_timestamp is None: self._first_fit_timestamp = datetime_index[0] time_for_trend = ( (datetime_index - self._first_fit_timestamp).days / 365.25 ).values time_for_seasonality = datetime_index.dayofyear.values # X_values to be used by PyMC; None if no exog vars X_values_for_pymc = X_exog_array if self._exog_var_names else None if X_values_for_pymc is not None and X_values_for_pymc.shape[1] == 0: X_values_for_pymc = ( None # Treat 0-column array as no exog vars for PyMC part ) return time_for_trend, time_for_seasonality, X_values_for_pymc, num_obs
[docs] def build_model( self, X: Optional[np.ndarray], y: np.ndarray, coords: Dict[str, Any] ): """ Defines the PyMC model. Parameters ---------- X : np.ndarray or None NumPy array of exogenous regressors. Can be None if no exogenous variables. y : np.ndarray The target variable. coords : dict Coordinates dictionary. Must contain "datetime_index" (pd.DatetimeIndex). If X is provided and has columns, coords must also contain "coeffs" (List[str]). """ datetime_index = coords.pop("datetime_index", None) if not isinstance(datetime_index, pd.DatetimeIndex): raise ValueError( "`coords` must contain 'datetime_index' of type pd.DatetimeIndex." ) # Get exog_names from coords["coeffs"] if X_exog_array is present exog_names_from_coords = coords.get("coeffs") ( time_for_trend, time_for_seasonality, X_values_for_pymc, # NumPy array for PyMC or None num_obs, ) = self._prepare_time_and_exog_features( X, datetime_index, exog_names_from_coords ) model_coords = { "obs_ind": np.arange(num_obs), } # Start with a copy of the input coords (datetime_index was already popped) if coords: model_coords.update(coords) # Ensure "coeffs" in model_coords (if present from input) is a list if "coeffs" in model_coords: current_coeffs = model_coords["coeffs"] if isinstance(current_coeffs, str): model_coords["coeffs"] = [current_coeffs] elif isinstance(current_coeffs, tuple): model_coords["coeffs"] = list(current_coeffs) elif not isinstance(current_coeffs, list): # If it's something else weird, raise error or clear it # so self._exog_var_names can take precedence if needed. raise TypeError( f"Unexpected type for 'coeffs' in input coords: {type(current_coeffs)}" ) # self._exog_var_names is the source of truth for coefficient names, ensure it's a list (done in _prepare) # Override or set "coeffs" in model_coords based on self._exog_var_names if self._exog_var_names: if ( "coeffs" in model_coords and model_coords["coeffs"] != self._exog_var_names ): # This implies a mismatch between what user provided in coords["coeffs"] # and what _prepare_time_and_exog_features decided based on X and coords["coeffs"] # This should ideally be caught earlier or be consistent. # For now, let's assume _prepare_time_and_exog_features's derivation (self._exog_var_names) is correct. print( f"Warning: Discrepancy in 'coeffs'. Using derived: {self._exog_var_names} over input: {model_coords['coeffs']}" ) model_coords["coeffs"] = self._exog_var_names elif "coeffs" in model_coords and model_coords["coeffs"]: # No exog vars determined by _prepare..., but coords has non-empty coeffs raise ValueError( f"Model determined no exogenous variables (self._exog_var_names is {self._exog_var_names}), " f"but input coords provided 'coeffs': {model_coords['coeffs']}. " f"If no exog vars, provide empty list or omit 'coeffs'." ) elif ( "coeffs" not in model_coords and self._exog_var_names ): # Should not happen if logic is right model_coords["coeffs"] = self._exog_var_names with self: self.add_coords(model_coords) # Time data for trend and seasonality t_trend_data = pm.Data( "t_trend_data", time_for_trend, dims="obs_ind", ) t_season_data = pm.Data( "t_season_data", time_for_seasonality, dims="obs_ind", ) # Get validated components (no more ugly imports in build_model!) trend_component_instance = self._get_trend_component() seasonality_component_instance = self._get_seasonality_component() # Seasonal component season_component = pm.Deterministic( "season_component", seasonality_component_instance.apply(t_season_data), dims="obs_ind", ) # Trend component trend_component_values = trend_component_instance.apply(t_trend_data) trend_component = pm.Deterministic( "trend_component", trend_component_values, dims="obs_ind", ) # Initialize mu with trend and seasonality mu_ = trend_component + season_component # Exogenous regressors (optional) if ( X_values_for_pymc is not None and self._exog_var_names ): # self._exog_var_names is guaranteed list # self.coords["coeffs"] should be an xarray.Coordinate object here. # Its .values attribute is a numpy array. So list(self.coords["coeffs"].values) is a list. model_coord_coeffs_list = ( list(self.coords["coeffs"]) if "coeffs" in self.coords else [] ) if ( "coeffs" not in self.coords or model_coord_coeffs_list != self._exog_var_names ): raise ValueError( f"Mismatch between internal exogenous variable names ('{self._exog_var_names}') " f"and model coordinates for 'coeffs' ({model_coord_coeffs_list})." ) if X_values_for_pymc.shape[1] != len(self._exog_var_names): raise ValueError( f"Shape mismatch: X_values_for_pymc has {X_values_for_pymc.shape[1]} columns, but " f"{len(self._exog_var_names)} names in self._exog_var_names ({self._exog_var_names})." ) X_data = pm.Data("X", X_values_for_pymc, dims=["obs_ind", "coeffs"]) beta = pm.Normal("beta", mu=0, sigma=10, dims="coeffs") mu_ = mu_ + pm.math.dot(X_data, beta) # Make mu_ an explicit deterministic variable named "mu" mu = pm.Deterministic("mu", mu_, dims="obs_ind") # Likelihood sigma = pm.HalfNormal("sigma", sigma=self.prior_sigma) y_data = pm.Data("y", y.flatten(), dims="obs_ind") pm.Normal("y_hat", mu=mu, sigma=sigma, observed=y_data, dims="obs_ind")
[docs] def fit( self, X: Optional[np.ndarray], y: np.ndarray, coords: Dict[str, Any] ) -> None: """Draw samples from posterior, prior predictive, and posterior predictive distributions, placing them in the model's idata attribute. Parameters ---------- X : np.ndarray or None NumPy array of exogenous regressors. Can be None or an array with 0 columns if no exogenous variables. y : np.ndarray The target variable. coords : dict Coordinates dictionary. Must contain "datetime_index" (pd.DatetimeIndex). If X is provided and has columns, coords must also contain "coeffs" (List[str]). """ random_seed = self.sample_kwargs.get("random_seed", None) # X can be None if no exog vars, _prepare_... handles it. self.build_model(X, y, coords=coords) with self: self.idata = pm.sample(**self.sample_kwargs) self.idata.extend(pm.sample_prior_predictive(random_seed=random_seed)) self.idata.extend( pm.sample_posterior_predictive( self.idata, var_names=["y_hat", "mu"], # Ensure mu is sampled progressbar=self.sample_kwargs.get("progressbar", True), random_seed=random_seed, ) ) return self.idata
def _data_setter( self, X_pred: Optional[np.ndarray], coords_pred: Dict[ str, Any ], # Must contain "datetime_index" for prediction period ) -> None: """ Set data for the model for prediction. X_pred contains exogenous variables for the prediction period. coords_pred must contain "datetime_index" for the prediction period. """ datetime_index_pred = coords_pred.get("datetime_index") if not isinstance(datetime_index_pred, pd.DatetimeIndex): raise ValueError( "`coords_pred` must contain 'datetime_index' for prediction." ) # For _data_setter, exog_names are already known (self._exog_var_names from fit) # We pass self._exog_var_names so _prepare_time_and_exog_features can validate # the shape of X_pred_numpy if it's provided. ( time_for_trend_pred_vals, time_for_seasonality_pred_vals, X_exog_pred_vals, # NumPy array for PyMC or None num_obs_pred, ) = self._prepare_time_and_exog_features( X_pred, datetime_index_pred, self._exog_var_names ) new_obs_inds = np.arange(num_obs_pred) data_to_set = { "y": np.zeros(num_obs_pred), "t_trend_data": time_for_trend_pred_vals, "t_season_data": time_for_seasonality_pred_vals, } coords_to_set = {"obs_ind": new_obs_inds} if ( "X" in self.named_vars ): # Model was built with exogenous variable X (i.e. self._exog_var_names is not empty) if ( X_exog_pred_vals is None and self._exog_var_names ): # Check if exog_var_names expects something raise ValueError( "Model was built with exogenous variables. " "New X data (X_pred) must provide these (or index_for_time_pred if X_pred is array)." ) if ( self._exog_var_names and X_exog_pred_vals is not None and X_exog_pred_vals.shape[1] != len(self._exog_var_names) ): raise ValueError( f"Shape mismatch for exogenous prediction variables. Expected {len(self._exog_var_names)} columns, " f"got {X_exog_pred_vals.shape[1]}." ) data_to_set["X"] = X_exog_pred_vals # Can be None if no exog vars elif X_exog_pred_vals is not None: print( "Warning: X_pred provided exogenous variables, but the model was not " "built with exogenous variables. These will be ignored." ) # Ensure "X" is set to None if no exog vars, even if "X" data var exists but model has no coeffs if not self._exog_var_names and "X" in self.named_vars: # Pass an array with 0 columns for the X data variable if no exog vars expected if X_exog_pred_vals is not None and X_exog_pred_vals.shape[1] > 0: # This should not happen if self._exog_var_names is empty print( "Warning: Model expects no exog vars, but X_exog_pred_vals has columns. Forcing to 0 columns." ) data_to_set["X"] = np.empty((num_obs_pred, 0)) elif X_exog_pred_vals is None: data_to_set["X"] = np.empty((num_obs_pred, 0)) else: # X_exog_pred_vals has 0 columns already data_to_set["X"] = X_exog_pred_vals with self: pm.set_data(data_to_set, coords=coords_to_set)
[docs] def predict( self, X: Optional[np.ndarray], coords: Dict[str, Any], # Must contain "datetime_index" for prediction period out_of_sample: Optional[bool] = False, ): """ Predict data given input X and coords for prediction period. coords must contain "datetime_index". If X has columns, coords should also have "coeffs". However, for prediction, exog var names are already known by the model. """ random_seed = self.sample_kwargs.get("random_seed", None) self._data_setter(X, coords_pred=coords) with self: post_pred = pm.sample_posterior_predictive( self.idata, var_names=["y_hat", "mu"], progressbar=self.sample_kwargs.get( "progressbar", False ), # Consistent with base random_seed=random_seed, ) return post_pred
[docs] def score( self, X: Optional[np.ndarray], y: np.ndarray, coords: Dict[str, Any], # Must contain "datetime_index" for score period ) -> pd.Series: """Score the Bayesian R2. coords must contain "datetime_index". If X has columns, coords should also have "coeffs". However, for scoring, exog var names are already known by the model. """ pred_output = self.predict(X, coords=coords) mu_pred = az.extract( pred_output, group="posterior_predictive", var_names="mu" ).T.values # Note: First argument must be a 1D array return r2_score(y.flatten(), mu_pred)
[docs] class StateSpaceTimeSeries(PyMCModel): """ State-space time series model using pymc_extras.statespace.structural. Parameters ---------- level_order : int, optional Order of the local level/trend component. Defaults to 2. seasonal_length : int, optional Seasonal period (e.g., 12 for monthly data with annual seasonality). Defaults to 12. trend_component : optional Custom state-space trend component. seasonality_component : optional Custom state-space seasonal component. sample_kwargs : dict, optional Kwargs passed to `pm.sample`. mode : str, optional Mode passed to `build_statespace_graph` (e.g., "JAX"). """
[docs] def __init__( self, level_order: int = 2, seasonal_length: int = 12, trend_component: Optional[Any] = None, seasonality_component: Optional[Any] = None, sample_kwargs: Optional[Dict[str, Any]] = None, mode: str = "JAX", ): super().__init__(sample_kwargs=sample_kwargs) self._custom_trend_component = trend_component self._custom_seasonality_component = seasonality_component self.level_order = level_order self.seasonal_length = seasonal_length self.mode = mode self.ss_mod = None self._validate_and_initialize_components()
def _validate_and_initialize_components(self): """ Validate custom components only. Optional dependencies are imported lazily when default components are actually needed. """ # Validate custom components have required methods if self._custom_trend_component is not None: if not hasattr(self._custom_trend_component, "apply"): raise ValueError( "Custom trend_component must have an 'apply' method that accepts time data " "and returns a PyMC tensor." ) if self._custom_seasonality_component is not None: if not hasattr(self._custom_seasonality_component, "apply"): raise ValueError( "Custom seasonality_component must have an 'apply' method that accepts time data " "and returns a PyMC tensor." ) # Initialize components self._trend_component = None self._seasonality_component = None def _get_trend_component(self): """Get the trend component, creating default if needed.""" if self._custom_trend_component is not None: return self._custom_trend_component # Create default trend component (lazy import of pymc-extras) if self._trend_component is None: try: from pymc_extras.statespace import structural as st except ImportError as err: raise ImportError( "StateSpaceTimeSeries requires pymc-extras when default trend component is used. " "Install it with `conda install -c conda-forge pymc-extras`." ) from err self._trend_component = st.LevelTrendComponent(order=self.level_order) return self._trend_component def _get_seasonality_component(self): """Get the seasonality component, creating default if needed.""" if self._custom_seasonality_component is not None: return self._custom_seasonality_component # Create default seasonality component (lazy import of pymc-extras) if self._seasonality_component is None: try: from pymc_extras.statespace import structural as st except ImportError as err: raise ImportError( "StateSpaceTimeSeries requires pymc-extras when default seasonality component is used. " "Install it with `conda install -c conda-forge pymc-extras`." ) from err self._seasonality_component = st.FrequencySeasonality( season_length=self.seasonal_length, name="freq" ) return self._seasonality_component
[docs] def build_model( self, X: Optional[np.ndarray], y: np.ndarray, coords: Dict[str, Any] ) -> None: """ Build the PyMC state-space model. `coords` must include: - 'datetime_index': a pandas.DatetimeIndex matching `y`. """ coords = coords.copy() datetime_index = coords.pop("datetime_index", None) if not isinstance(datetime_index, pd.DatetimeIndex): raise ValueError( "coords must contain 'datetime_index' of type pandas.DatetimeIndex." ) self._train_index = datetime_index # Instantiate components and build state-space object trend = self._get_trend_component() season = self._get_seasonality_component() combined = trend + season self.ss_mod = combined.build() # Extract parameter dims (order: initial_trend, sigma_trend, seasonal, P0) initial_trend_dims, sigma_trend_dims, annual_dims, P0_dims = ( self.ss_mod.param_dims.values() ) coordinates = {**coords, **self.ss_mod.coords} # Build model with pm.Model(coords=coordinates) as self.second_model: # Add coords for statespace (includes 'time' and 'state' dims) P0_diag = pm.Gamma("P0_diag", alpha=2, beta=1, dims=P0_dims[0]) _P0 = pm.Deterministic("P0", pt.diag(P0_diag), dims=P0_dims) _initial_trend = pm.Normal( "initial_trend", sigma=50, dims=initial_trend_dims ) _annual_seasonal = pm.ZeroSumNormal("freq", sigma=80, dims=annual_dims) _sigma_trend = pm.Gamma( "sigma_trend", alpha=2, beta=5, dims=sigma_trend_dims ) _sigma_monthly_season = pm.Gamma("sigma_freq", alpha=2, beta=1) # Attach the state-space graph using the observed data df = pd.DataFrame({"y": y.flatten()}, index=datetime_index) self.ss_mod.build_statespace_graph(df[["y"]], mode=self.mode)
[docs] def fit( self, X: Optional[np.ndarray], y: np.ndarray, coords: Dict[str, Any] ) -> az.InferenceData: """ Fit the model, drawing posterior samples. Returns the InferenceData with parameter draws. """ self.build_model(X, y, coords) with self.second_model: self.idata = pm.sample(**self.sample_kwargs) self.idata.extend( pm.sample_posterior_predictive( self.idata, ) ) self.conditional_idata = self._smooth() return self._prepare_idata()
def _prepare_idata(self): if self.idata is None: raise RuntimeError("Model must be fit before smoothing.") new_idata = self.idata.copy() # Get smoothed posterior and sum over state dimension smoothed = self.conditional_idata.isel(observed_state=0).rename( {"smoothed_posterior_observed": "y_hat"} ) y_hat_summed = smoothed.y_hat.copy() # Rename 'time' to 'obs_ind' to match CausalPy conventions if "time" in y_hat_summed.dims: y_hat_final = y_hat_summed.rename({"time": "obs_ind"}) else: y_hat_final = y_hat_summed new_idata["posterior_predictive"]["y_hat"] = y_hat_final new_idata["posterior_predictive"]["mu"] = y_hat_final return new_idata def _smooth(self) -> xr.Dataset: """ Run the Kalman smoother / conditional posterior sampler. Returns an xarray Dataset with 'smoothed_posterior'. """ if self.idata is None: raise RuntimeError("Model must be fit before smoothing.") return self.ss_mod.sample_conditional_posterior(self.idata) def _forecast(self, start: pd.Timestamp, periods: int) -> xr.Dataset: """ Forecast future values. `start` is the timestamp of the last observed point, and `periods` is the number of steps ahead. Returns an xarray Dataset with 'forecast_observed'. """ if self.idata is None: raise RuntimeError("Model must be fit before forecasting.") return self.ss_mod.forecast(self.idata, start=start, periods=periods)
[docs] def predict( self, X: Optional[np.ndarray], coords: Dict[str, Any], out_of_sample: Optional[bool] = False, ) -> xr.Dataset: """ Wrapper around forecast: expects coords with 'datetime_index' of future points. """ if not out_of_sample: return self._prepare_idata() else: idx = coords.get("datetime_index") if not isinstance(idx, pd.DatetimeIndex): raise ValueError( "coords must contain 'datetime_index' for prediction period." ) last = self._train_index[-1] # start forecasting after the last observed temp_idata = self._forecast(start=last, periods=len(idx)) new_idata = temp_idata.copy() # Rename 'time' to 'obs_ind' to match CausalPy conventions if "time" in new_idata.dims: new_idata = new_idata.rename({"time": "obs_ind"}) # Extract the forecasted observed data and assign it to 'y_hat' new_idata["y_hat"] = new_idata["forecast_observed"].isel(observed_state=0) # Assign 'y_hat' to 'mu' for consistency new_idata["mu"] = new_idata["y_hat"] return new_idata
[docs] def score( self, X: Optional[np.ndarray], y: np.ndarray, coords: Dict[str, Any] ) -> pd.Series: """ Compute R^2 between observed and mean forecast. """ pred = self.predict(X, coords) fc = pred["posterior_predictive"]["y_hat"] # .isel(observed_state=0) # Use all posterior samples to compute Bayesian R² # fc has shape (chain, draw, time), we want (n_samples, time) fc_samples = fc.stack( sample=["chain", "draw"] ).T.values # Shape: (time, n_samples) # Use arviz.r2_score to get both r2 and r2_std return r2_score(y.flatten(), fc_samples)