Source code for causalpy.experiments.interrupted_time_series

#   Copyright 2022 - 2025 The PyMC Labs Developers
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
"""
Interrupted Time Series Analysis
"""

from typing import List, Union

import arviz as az
import numpy as np
import pandas as pd
import xarray as xr
from matplotlib import pyplot as plt
from patsy import build_design_matrices, dmatrices
from sklearn.base import RegressorMixin

from causalpy.custom_exceptions import BadIndexException
from causalpy.plot_utils import get_hdi_to_df, plot_xY
from causalpy.pymc_models import (
    BayesianBasisExpansionTimeSeries,
    PyMCModel,
    StateSpaceTimeSeries,
)
from causalpy.utils import round_num

from .base import BaseExperiment

LEGEND_FONT_SIZE = 12


[docs] class InterruptedTimeSeries(BaseExperiment): """ The class for interrupted time series analysis. :param data: A pandas dataframe :param treatment_time: The time when treatment occurred, should be in reference to the data index :param formula: A statistical model formula :param model: A PyMC model Example -------- >>> import causalpy as cp >>> df = ( ... cp.load_data("its") ... .assign(date=lambda x: pd.to_datetime(x["date"])) ... .set_index("date") ... ) >>> treatment_time = pd.to_datetime("2017-01-01") >>> seed = 42 >>> result = cp.InterruptedTimeSeries( ... df, ... treatment_time, ... formula="y ~ 1 + t + C(month)", ... model=cp.pymc_models.LinearRegression( ... sample_kwargs={ ... "target_accept": 0.95, ... "random_seed": seed, ... "progressbar": False, ... } ... ), ... ) """ expt_type = "Interrupted Time Series" supports_ols = True supports_bayes = True
[docs] def __init__( self, data: pd.DataFrame, treatment_time: Union[int, float, pd.Timestamp], formula: str, model=None, **kwargs, ) -> None: super().__init__(model=model) # rename the index to "obs_ind" data.index.name = "obs_ind" self.input_validation(data, treatment_time) self.treatment_time = treatment_time # set experiment type - usually done in subclasses self.expt_type = "Pre-Post Fit" # split data in to pre and post intervention self.datapre = data[data.index < self.treatment_time] self.datapost = data[data.index >= self.treatment_time] self.formula = formula # set things up with pre-intervention data y, X = dmatrices(formula, self.datapre) self.outcome_variable_name = y.design_info.column_names[0] self._y_design_info = y.design_info self._x_design_info = X.design_info self.labels = X.design_info.column_names self.pre_y, self.pre_X = np.asarray(y), np.asarray(X) # process post-intervention data (new_y, new_x) = build_design_matrices( [self._y_design_info, self._x_design_info], self.datapost ) self.post_X = np.asarray(new_x) self.post_y = np.asarray(new_y) # turn into xarray.DataArray's self.pre_X = xr.DataArray( self.pre_X, dims=["obs_ind", "coeffs"], coords={ "obs_ind": self.datapre.index, "coeffs": self.labels, }, ) self.pre_y = xr.DataArray( self.pre_y, # Keep 2D shape dims=["obs_ind", "treated_units"], coords={"obs_ind": self.datapre.index, "treated_units": ["unit_0"]}, ) self.post_X = xr.DataArray( self.post_X, dims=["obs_ind", "coeffs"], coords={ "obs_ind": self.datapost.index, "coeffs": self.labels, }, ) self.post_y = xr.DataArray( self.post_y, # Keep 2D shape dims=["obs_ind", "treated_units"], coords={"obs_ind": self.datapost.index, "treated_units": ["unit_0"]}, ) # fit the model to the observed (pre-intervention) data if isinstance(self.model, PyMCModel): is_bsts_like = isinstance( self.model, (BayesianBasisExpansionTimeSeries, StateSpaceTimeSeries) ) if is_bsts_like: # BSTS/StateSpace models expect numpy arrays and datetime coords X_fit = self.pre_X.values if self.pre_X.shape[1] > 0 else None y_fit = self.pre_y.isel(treated_units=0).values pre_coords = {"datetime_index": self.datapre.index} if X_fit is not None: pre_coords["coeffs"] = self.labels self.model.fit(X=X_fit, y=y_fit, coords=pre_coords) else: # General PyMC models expect xarray with treated_units COORDS = { "coeffs": self.labels, "obs_ind": np.arange(self.pre_X.shape[0]), "treated_units": ["unit_0"], } self.model.fit(X=self.pre_X, y=self.pre_y, coords=COORDS) elif isinstance(self.model, RegressorMixin): # For OLS models, use 1D y data self.model.fit(X=self.pre_X, y=self.pre_y.isel(treated_units=0)) else: raise ValueError("Model type not recognized") # score the goodness of fit to the pre-intervention data if isinstance(self.model, PyMCModel): is_bsts_like = isinstance( self.model, (BayesianBasisExpansionTimeSeries, StateSpaceTimeSeries) ) if is_bsts_like: X_score = self.pre_X.values if self.pre_X.shape[1] > 0 else None y_score = self.pre_y.isel(treated_units=0).values score_coords = {"datetime_index": self.datapre.index} if X_score is not None: score_coords["coeffs"] = self.labels self.score = self.model.score(X=X_score, y=y_score, coords=score_coords) else: self.score = self.model.score(X=self.pre_X, y=self.pre_y) elif isinstance(self.model, RegressorMixin): self.score = self.model.score( X=self.pre_X, y=self.pre_y.isel(treated_units=0) ) # get the model predictions of the observed (pre-intervention) data if isinstance(self.model, PyMCModel): is_bsts_like = isinstance( self.model, (BayesianBasisExpansionTimeSeries, StateSpaceTimeSeries) ) if is_bsts_like: X_pre_predict = self.pre_X.values if self.pre_X.shape[1] > 0 else None pre_pred_coords = {"datetime_index": self.datapre.index} self.pre_pred = self.model.predict( X=X_pre_predict, coords=pre_pred_coords ) if not isinstance(self.pre_pred, az.InferenceData): self.pre_pred = az.InferenceData(posterior_predictive=self.pre_pred) else: self.pre_pred = self.model.predict(X=self.pre_X) elif isinstance(self.model, RegressorMixin): self.pre_pred = self.model.predict(X=self.pre_X) # calculate the counterfactual (post period) if isinstance(self.model, PyMCModel): is_bsts_like = isinstance( self.model, (BayesianBasisExpansionTimeSeries, StateSpaceTimeSeries) ) if is_bsts_like: X_post_predict = ( self.post_X.values if self.post_X.shape[1] > 0 else None ) post_pred_coords = {"datetime_index": self.datapost.index} self.post_pred = self.model.predict( X=X_post_predict, coords=post_pred_coords, out_of_sample=True ) if not isinstance(self.post_pred, az.InferenceData): self.post_pred = az.InferenceData( posterior_predictive=self.post_pred ) else: self.post_pred = self.model.predict(X=self.post_X) elif isinstance(self.model, RegressorMixin): self.post_pred = self.model.predict(X=self.post_X) # calculate impact - use appropriate y data format for each model type if isinstance(self.model, PyMCModel): is_bsts_like = isinstance( self.model, (BayesianBasisExpansionTimeSeries, StateSpaceTimeSeries) ) if is_bsts_like: pre_y_for_impact = self.pre_y.isel(treated_units=0) post_y_for_impact = self.post_y.isel(treated_units=0) self.pre_impact = self.model.calculate_impact( pre_y_for_impact, self.pre_pred ) self.post_impact = self.model.calculate_impact( post_y_for_impact, self.post_pred ) else: # PyMC models with treated_units use 2D data self.pre_impact = self.model.calculate_impact(self.pre_y, self.pre_pred) self.post_impact = self.model.calculate_impact( self.post_y, self.post_pred ) elif isinstance(self.model, RegressorMixin): # SKL models work with 1D data self.pre_impact = self.model.calculate_impact( self.pre_y.isel(treated_units=0), self.pre_pred ) self.post_impact = self.model.calculate_impact( self.post_y.isel(treated_units=0), self.post_pred ) self.post_impact_cumulative = self.model.calculate_cumulative_impact( self.post_impact )
[docs] def input_validation(self, data, treatment_time): """Validate the input data and model formula for correctness""" if isinstance(data.index, pd.DatetimeIndex) and not isinstance( treatment_time, pd.Timestamp ): raise BadIndexException( "If data.index is DatetimeIndex, treatment_time must be pd.Timestamp." ) if not isinstance(data.index, pd.DatetimeIndex) and isinstance( treatment_time, pd.Timestamp ): raise BadIndexException( "If data.index is not DatetimeIndex, treatment_time must be pd.Timestamp." # noqa: E501 )
[docs] def summary(self, round_to=None) -> None: """Print summary of main results and model coefficients. :param round_to: Number of decimals used to round results. Defaults to 2. Use "None" to return raw numbers """ print(f"{self.expt_type:=^80}") print(f"Formula: {self.formula}") self.print_coefficients(round_to)
def _bayesian_plot( self, round_to=None, **kwargs ) -> tuple[plt.Figure, List[plt.Axes]]: """ Plot the results :param round_to: Number of decimals used to round results. Defaults to 2. Use "None" to return raw numbers. """ counterfactual_label = "Counterfactual" fig, ax = plt.subplots(3, 1, sharex=True, figsize=(7, 8)) # TOP PLOT -------------------------------------------------- # pre-intervention period pre_mu = self.pre_pred["posterior_predictive"].mu pre_mu_plot = ( pre_mu.isel(treated_units=0) if "treated_units" in pre_mu.dims else pre_mu ) h_line, h_patch = plot_xY( self.datapre.index, pre_mu_plot, ax=ax[0], plot_hdi_kwargs={"color": "C0"}, ) handles = [(h_line, h_patch)] labels = ["Pre-intervention period"] (h,) = ax[0].plot( self.datapre.index, self.pre_y.isel(treated_units=0) if hasattr(self.pre_y, "isel") else self.pre_y[:, 0], "k.", label="Observations", ) handles.append(h) labels.append("Observations") # post intervention period post_mu = self.post_pred["posterior_predictive"].mu post_mu_plot = ( post_mu.isel(treated_units=0) if "treated_units" in post_mu.dims else post_mu ) h_line, h_patch = plot_xY( self.datapost.index, post_mu_plot, ax=ax[0], plot_hdi_kwargs={"color": "C1"}, ) handles.append((h_line, h_patch)) labels.append(counterfactual_label) ax[0].plot( self.datapost.index, self.post_y.isel(treated_units=0) if hasattr(self.post_y, "isel") else self.post_y[:, 0], "k.", ) # Shaded causal effect post_pred_mu = az.extract( self.post_pred, group="posterior_predictive", var_names="mu" ) if "treated_units" in post_pred_mu.dims: post_pred_mu = post_pred_mu.isel(treated_units=0) post_pred_mu = post_pred_mu.mean("sample") h = ax[0].fill_between( self.datapost.index, y1=post_pred_mu, y2=self.post_y.isel(treated_units=0) if hasattr(self.post_y, "isel") else self.post_y[:, 0], color="C0", alpha=0.25, ) handles.append(h) labels.append("Causal impact") # Title with R^2, supporting both unit_0_r2 and r2 keys r2_val = None r2_std_val = None try: if isinstance(self.score, pd.Series): if "unit_0_r2" in self.score.index: r2_val = self.score["unit_0_r2"] r2_std_val = self.score.get("unit_0_r2_std", None) elif "r2" in self.score.index: r2_val = self.score["r2"] r2_std_val = self.score.get("r2_std", None) except Exception: pass title_str = "Pre-intervention Bayesian $R^2$" if r2_val is not None: title_str += f": {round_num(r2_val, round_to)}" if r2_std_val is not None: title_str += f"\n(std = {round_num(r2_std_val, round_to)})" ax[0].set(title=title_str) # MIDDLE PLOT ----------------------------------------------- pre_impact_plot = ( self.pre_impact.isel(treated_units=0) if hasattr(self.pre_impact, "dims") and "treated_units" in self.pre_impact.dims else self.pre_impact ) plot_xY( self.datapre.index, pre_impact_plot, ax=ax[1], plot_hdi_kwargs={"color": "C0"}, ) post_impact_plot = ( self.post_impact.isel(treated_units=0) if hasattr(self.post_impact, "dims") and "treated_units" in self.post_impact.dims else self.post_impact ) plot_xY( self.datapost.index, post_impact_plot, ax=ax[1], plot_hdi_kwargs={"color": "C1"}, ) ax[1].axhline(y=0, c="k") post_impact_mean = ( self.post_impact.mean(["chain", "draw"]) if hasattr(self.post_impact, "mean") else self.post_impact ) if ( hasattr(post_impact_mean, "dims") and "treated_units" in post_impact_mean.dims ): post_impact_mean = post_impact_mean.isel(treated_units=0) ax[1].fill_between( self.datapost.index, y1=post_impact_mean, color="C0", alpha=0.25, label="Causal impact", ) ax[1].set(title="Causal Impact") # BOTTOM PLOT ----------------------------------------------- ax[2].set(title="Cumulative Causal Impact") post_cum_plot = ( self.post_impact_cumulative.isel(treated_units=0) if hasattr(self.post_impact_cumulative, "dims") and "treated_units" in self.post_impact_cumulative.dims else self.post_impact_cumulative ) plot_xY( self.datapost.index, post_cum_plot, ax=ax[2], plot_hdi_kwargs={"color": "C1"}, ) ax[2].axhline(y=0, c="k") # Intervention line for i in [0, 1, 2]: ax[i].axvline( x=self.treatment_time, ls="-", lw=3, color="r", ) ax[0].legend( handles=(h_tuple for h_tuple in handles), labels=labels, fontsize=LEGEND_FONT_SIZE, ) return fig, ax def _ols_plot(self, round_to=None, **kwargs) -> tuple[plt.Figure, List[plt.Axes]]: """ Plot the results :param round_to: Number of decimals used to round results. Defaults to 2. Use "None" to return raw numbers. """ counterfactual_label = "Counterfactual" fig, ax = plt.subplots(3, 1, sharex=True, figsize=(7, 8)) ax[0].plot(self.datapre.index, self.pre_y, "k.") ax[0].plot(self.datapost.index, self.post_y, "k.") ax[0].plot(self.datapre.index, self.pre_pred, c="k", label="model fit") ax[0].plot( self.datapost.index, self.post_pred, label=counterfactual_label, ls=":", c="k", ) ax[0].set( title=f"$R^2$ on pre-intervention data = {round_num(self.score, round_to)}" ) ax[1].plot(self.datapre.index, self.pre_impact, "k.") ax[1].plot( self.datapost.index, self.post_impact, "k.", label=counterfactual_label, ) ax[1].axhline(y=0, c="k") ax[1].set(title="Causal Impact") ax[2].plot(self.datapost.index, self.post_impact_cumulative, c="k") ax[2].axhline(y=0, c="k") ax[2].set(title="Cumulative Causal Impact") # Shaded causal effect ax[0].fill_between( self.datapost.index, y1=np.squeeze(self.post_pred), y2=np.squeeze(self.post_y), color="C0", alpha=0.25, label="Causal impact", ) ax[1].fill_between( self.datapost.index, y1=np.squeeze(self.post_impact), color="C0", alpha=0.25, label="Causal impact", ) # Intervention line # TODO: make this work when treatment_time is a datetime for i in [0, 1, 2]: ax[i].axvline( x=self.treatment_time, ls="-", lw=3, color="r", label="Treatment time", ) ax[0].legend(fontsize=LEGEND_FONT_SIZE) return (fig, ax)
[docs] def get_plot_data_bayesian(self, hdi_prob: float = 0.94) -> pd.DataFrame: """ Recover the data of the experiment along with the prediction and causal impact information. :param hdi_prob: Prob for which the highest density interval will be computed. The default value is defined as the default from the :func:`arviz.hdi` function. """ if isinstance(self.model, PyMCModel): hdi_pct = int(round(hdi_prob * 100)) pred_lower_col = f"pred_hdi_lower_{hdi_pct}" pred_upper_col = f"pred_hdi_upper_{hdi_pct}" impact_lower_col = f"impact_hdi_lower_{hdi_pct}" impact_upper_col = f"impact_hdi_upper_{hdi_pct}" pre_data = self.datapre.copy() post_data = self.datapost.copy() pre_mu = az.extract( self.pre_pred, group="posterior_predictive", var_names="mu" ) post_mu = az.extract( self.post_pred, group="posterior_predictive", var_names="mu" ) if "treated_units" in pre_mu.dims: pre_mu = pre_mu.isel(treated_units=0) if "treated_units" in post_mu.dims: post_mu = post_mu.isel(treated_units=0) pre_data["prediction"] = pre_mu.mean("sample").values post_data["prediction"] = post_mu.mean("sample").values hdi_pre_pred = get_hdi_to_df( self.pre_pred["posterior_predictive"].mu, hdi_prob=hdi_prob ) hdi_post_pred = get_hdi_to_df( self.post_pred["posterior_predictive"].mu, hdi_prob=hdi_prob ) # If treated_units present, select unit_0; otherwise use directly if ( isinstance(hdi_pre_pred.index, pd.MultiIndex) and "treated_units" in hdi_pre_pred.index.names ): pre_data[[pred_lower_col, pred_upper_col]] = hdi_pre_pred.xs( "unit_0", level="treated_units" ).set_index(pre_data.index) post_data[[pred_lower_col, pred_upper_col]] = hdi_post_pred.xs( "unit_0", level="treated_units" ).set_index(post_data.index) else: pre_data[[pred_lower_col, pred_upper_col]] = hdi_pre_pred.set_index( pre_data.index ) post_data[[pred_lower_col, pred_upper_col]] = hdi_post_pred.set_index( post_data.index ) pre_impact_mean = ( self.pre_impact.mean(dim=["chain", "draw"]) if hasattr(self.pre_impact, "mean") else self.pre_impact ) post_impact_mean = ( self.post_impact.mean(dim=["chain", "draw"]) if hasattr(self.post_impact, "mean") else self.post_impact ) if ( hasattr(pre_impact_mean, "dims") and "treated_units" in pre_impact_mean.dims ): pre_impact_mean = pre_impact_mean.isel(treated_units=0) if ( hasattr(post_impact_mean, "dims") and "treated_units" in post_impact_mean.dims ): post_impact_mean = post_impact_mean.isel(treated_units=0) pre_data["impact"] = pre_impact_mean.values post_data["impact"] = post_impact_mean.values # Compute impact HDIs directly via quantiles over posterior dims to avoid column shape issues alpha = 1 - hdi_prob lower_q = alpha / 2 upper_q = 1 - alpha / 2 pre_lower_da = self.pre_impact.quantile(lower_q, dim=["chain", "draw"]) pre_upper_da = self.pre_impact.quantile(upper_q, dim=["chain", "draw"]) post_lower_da = self.post_impact.quantile(lower_q, dim=["chain", "draw"]) post_upper_da = self.post_impact.quantile(upper_q, dim=["chain", "draw"]) # If a treated_units dim remains for some models, select unit_0 if hasattr(pre_lower_da, "dims") and "treated_units" in pre_lower_da.dims: pre_lower_da = pre_lower_da.sel(treated_units="unit_0") pre_upper_da = pre_upper_da.sel(treated_units="unit_0") if hasattr(post_lower_da, "dims") and "treated_units" in post_lower_da.dims: post_lower_da = post_lower_da.sel(treated_units="unit_0") post_upper_da = post_upper_da.sel(treated_units="unit_0") pre_data[impact_lower_col] = ( pre_lower_da.to_series().reindex(pre_data.index).values ) pre_data[impact_upper_col] = ( pre_upper_da.to_series().reindex(pre_data.index).values ) post_data[impact_lower_col] = ( post_lower_da.to_series().reindex(post_data.index).values ) post_data[impact_upper_col] = ( post_upper_da.to_series().reindex(post_data.index).values ) self.plot_data = pd.concat([pre_data, post_data]) return self.plot_data else: raise ValueError("Unsupported model type")
[docs] def get_plot_data_ols(self) -> pd.DataFrame: """ Recover the data of the experiment along with the prediction and causal impact information. """ pre_data = self.datapre.copy() post_data = self.datapost.copy() pre_data["prediction"] = self.pre_pred post_data["prediction"] = self.post_pred pre_data["impact"] = self.pre_impact post_data["impact"] = self.post_impact self.plot_data = pd.concat([pre_data, post_data]) return self.plot_data